Robots on Earth
- Cartesian robot /Gantry robot: Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are coincident with a Cartesian coordinator.
- Cylindrical robot: Used for assembly operations, handling at machine tools, spot welding, and handling at diecasting machines. It's a robot whose axes form a cylindrical coordinate system.
- Spherical/Polar robot: Used for handling at machine tools, spot welding, diecasting, fettling machines, gas welding and arc welding. It's a robot whose axes form a polar coordinate system.
- SCARA robot: Used for pick and place work, application of sealant, assembly operations and handling machine tools. It's a robot which has two parallel rotary joints to provide compliance in a plane.
- Articulated robot: Used for assembly operations, diecasting, fettling machines, gas welding, arc welding and spray painting. It's a robot whose arm has at least three rotary joints.
- Parallel robot: One use is a mobile platform handling cockpit flight simulators. It's a robot whose arms have concurrent prismatic or rotary joints.
Outside the manufacturing world robots perform other important jobs. They can be found in hazardous duty service, CAD/CAM design and prototyping, maintenance jobs, fighting fires, medical applications, military warfare and on the farm.
Farmers drive over a billion slooooww tractor miles every year on the same ground. Their land is generally gentle, and proven robot navigation techniques can be applied to this environment. A robot agricultural harvester named Demeter is a model for commercializing mobile robotics technology. The Demeter harvester contains controllers, positioners, safeguards, and task software specialized to the needs commercial agriculture.
Some robots are used to investigate hazardous and dangerous environments. The Pioneer robot is a remote reconnaissance system for structural analysis of the Chornobyl Unit 4 reactor building. Its major components are a teleoperated mobile robot for deploying sensor and sampling payloads, a mapper for creating photorealistic 3D models of the building interior, a coreborer for cutting and retrieving samples of structural materials, and a suite of radiation and other environmental sensors.
An eight-legged, tethered, robot named Dante II descended into the active crater of Mt. Spurr, an Alaskan volcano 90 miles west of Anchorage. Dante II's mission was to rappel and walk autonomously over rough terrain in a harsh environment; receive instructions from remote operators; demonstrate sophisticated communications and control software; and determine how much carbon dioxide, hydrogen sulfide, and sulfur dioxide exist in the steamy gas emanating from fumaroles in the crater. Via satellite, Dante II sent back visual information and other data, as well as received instruction from human operators at control stations in Anchorage, Washington D.C., and the NASA Ames Research Center near San Francisco. Dante II saves volcanologists from having to enter the craters of active volcanoes. It also demonstrates the technology necessary for a robot to explore the surface of the moon or planets. That is, the robot must be able to walk on rough terrain in a harsh environment, receive instructions from remote operators about where to go next, and reach those commanded goals autonomously.Robotic underwater rovers are used explore and gather information about many facets of our marine environment. One example of underwater exploration is Project Jeremy, a collaboration between NASA and Santa Clara University. Scientists sent an underwater telepresence remotely operated vehicle (TROV) into the freezing Arctic Ocean waters to investigate the remains of a whaling fleet lost in 1871. The TROV was tethered to the surface boat Polar Star by a cable that carried power and instructions down to the robot and the robot returned video images up to the Polar Star. The TROV located two ships which it documented using stereoscopic video cameras and control mechanisms like the ones on the Mars Pathfinder. In addition to pictures, the TROV can also collect artifacts and gather information about the water conditions. By learning how to study extreme environments on earth, scientists will be better prepared to study environments on other planets.
Check out Ways to Use Robots
Robots in Space
Space-based robotic technology at NASA falls within three specific mission areas: exploration robotics, science payload maintenance, and on-orbit servicing. Related elements are terrestrial/commercial applications which transfer technologies generated from space telerobotics to the commercial sector and component technology which encompasses the development of joint designs, muscle wire, exoskeletons and sensor technology.Related Post:
- what is meteorite?
- lunar eclipse
- the conditions of solar eclipse happen
- Three Laws of Thermodynamics
- Nanotechnology
- Fiber Optics
- 10 new technologies that will revolutionise your life
- Downloading Text Alert Sounds and Some Safety Precautions
- Send, Message, Send: The SMS and Its Role in Mobile Communication
- What’s the Best SMS Text Messaging Software Out There?
- How to Avoid Losing Your Data to the Slothful PC Computer Technician
- 10 Free Android Apps That Will Actually Make You Money While Shopping!
- Professional Web Design, Professional Web Designer
- Considerations When Selecting a Kipor Generator
- An Introduction to Radio Control Boats and Planes
- A Good Energy Choice, Solar Panels
- Rapid Broadband Communication To Keep Your Business On Track
- Benefits of Reverse Engineering MicroScribe
- Essential Information Regarding the Short Message Service
- Text Messaging Sounds, Wallpapers and Applications For Phones
- Text Message Tones, Videos and Cell Phone Features
- The Advantages of Using SMS Software
- Applications and Games Shared by a SMS Provider
- What is an SMS Server?